
HOMEWORK 6

Due date: Next Monday.

Exercises: 5, 11, 12, page 83-84
Exercises: 5, page 86
Exercises: 2, 10, 11, 12, page 95-96

Problem 1. Let V,W be two vector spaces over F and T : V → W be a linear transformation.
Show that there is isomorphism

T : V/ker(T ) → Im(T )

defined by T (α+ ker(T )) := T (α).

The proof is given in class. Please repeat it here. Let VectF be the class of all vector spaces over
F . An element of VectF is just a vector space over F .

Problem 2. Given V1, V2, V3 ∈ VectF and T1 ∈ HomF (V1, V2), T2 ∈ HomF (V2, V3). Show that

(1) ker(T1) ⊂ ker(T2 ◦ T1);
(2) T1(ker(T2 ◦ T1)) ⊂ ker(T2).

(3) There is an injective map T̃1 : ker(T2 ◦ T1)/ker(T1) → ker(T2) defined by T̃1(x̄) = T1(x) for
x ∈ ker(T2 ◦T1), where x̄ represents the equivalence class of x, namely x̄ = x+ker(T1). (You
need to check that this map is well-defined, linear and injective. You can omit the “linear”
part if you think it is easy.)

(4) Assume that dimF (Vi) < ∞ for i = 1, 2, 3. Show that dimF ker(T2 ◦ T1) ≤ dimF ker(T1) +
dimF ker(T2).

(5) Given A2 ∈ Matm×n(F ) and A1 ∈ Matn×k(F ), show that

rank(A1) + rank(A2)− n ≤ rank(A2A1) ≤ min {rank(A1), rank(A2)} .

Hint: Consider the linear transformation T1 : F k → Fn, T2 : Fn → Fm defined by Ti(X) =
AiX, and use (4).

(6) Given a matrix A ∈ Matm×n(F ) with rank(A) = r and a positive number p with p < r.
Show that there does not exist matrices C ∈ Matm×p(F ) and R ∈ Matp×n(F ) such that
A = CR. Hint: This is a direct corollary of the last part.

Comment: The inequality in (5) is called Sylvester’s rank inequality. Compare (6) with Problem
2 of HW 5. Do this problem step by step. It is not hard at all.

Problem 3. (1) Show that Cn is isomorphic to R2n as an R-vector space. Namely, there exists
an R-linear isomorphism T : Cn → R2n.

(2) Given v = (z1, . . . , zn) ∈ Cn with zj = aj + bj
√
−1 ∈ C with aj , bj ∈ R. Compute T (v) for

the isomorphism T you choose in part (1).

Problem 4. Consider the R-vector space V = C. Then dimR(V ) = 2. Denote e1 = −1 + 7i and
e2 = 5i, where i =

√
−1 ∈ C.

(1) Show that B = {e1, e2} is a basis of V over R.
(2) Let z = x+ yi ∈ C with x, y ∈ R. Consider the map fz : V → V defined by fz(t) = zt. Show

that fz is R-linear.
(3) Let T (z) ∈ Mat2×2(R) be the matrix of fz with respect to the ordered basis B. Show that

T (z) =

(
x+ 7y 5y
−10y x− 7y

)
.
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(4) Show that the map

T : C → Mat2×2(R)
z 7→ T (z),

satisfies T (z1z2) = T (z1)T (z2) and T (z1 + z2) = T (z1) + T (z2).

Note that the matrix T (z) is the one given in Problem 5 of page 86 of the textbook. By Problem
5 of Page 86, the map z 7→ T (z) is injective, and satisfies T (z1z2) = T (z1)T (z2). These properties
can be proved without explicit calculation, just using the fact that T (z) is the matrix of the linear
transformation fz. The next problem is a “higher dimensional” version of Problem 5 of page 86.

Problem 5. Consider the R-vector space V = C2. Then dimR(V ) = 4.

(1) Find an ordered basis B of V over R.
(2) For a matrix A ∈ Mat2×2(C), consider the map TA : V → V defined by TA(X) = AX for

X ∈ C2, which is R-linear. Denote R(A) = [TA]B, namely R(A) ∈ Mat4×4(R) is the matrix
of TA with respect to B when V is viewed as a R-vector space. Show that the map A 7→ R(A)
from Mat2×2(C) to Mat4×4(R) satisfies R(A)R(B) = R(AB).

(3) Compute R(I2), where I2 ∈ Mat2×2(C) is the identity matrix.
(4) Show that if A is invertible, then R(A) is also invertible. Thus we get a map GL2(C) →

GL4(R).

(5) Let A =

(
1 i
i 1

)
. Compute R(A). (It depends on the ordered basis you chose in part (1)).

1. Real vector space vs complex vector space

Let V be a vector space over C. Then we can also view V as a vector space over R since R is a
subfield of C. Conversely, if we are given a vector space W over R, in general, we might ask if it
is possible to view W as a vector space over C. There is an obvious restriction on dimR W if it is
finite. What is it?

Problem 6. (1) Let V be a vector space over C. Show that there is a linear map J ∈ EndR(V )
such that J ◦ J = −I.

(2) Let W be a vector space over R and let J ∈ EndR(W ) be a linear map such that J ◦J = −I.
Show that we can define a C-vector space structure on W such that (1) The addition on W is
the same; (2) The scaler product C×W → W is defined by (a+b

√
−1) ·v = av+bJ(v), a, b ∈

R.
If dimR(W ) is finite, a necessary condition for the existence of linear map J ∈ EndR(W ) such

that J ◦ J = −I is that dimR(W ) must be even.

2. Complex linear vs Real linear

Let V be a vector space over C. We can also view V as a vector space over R since R ⊂ C. Let
T ∈ EndR(V ) be an R-linear map, which means T (av) = aT (v) for all a ∈ R, v ∈ V . In general, T
is not C-linear. A linear map T ∈ HomR(V, V ) is called conjugate linear if T (zv) = zT (v), for all
z ∈ C, v ∈ V .

Problem 7. Let V = C be the 1-dimensional vector space over C. Consider the R-linear map
T : V → V given by

T (a+ ib) = 2a+ b+ i(a+ 3b),

where i =
√
−1. Determine whether T is C-linear, conjugate linear or neither.

Problem 8. Let V be a vector space over C. Consider the linear map J : V → V defined by
J(v) =

√
−1v for v ∈ V . Note that

√
−1v makes sense because V is a vector space over C.

(1) Show that T is C-linear iff TJ = JT . Find a similar condition for the conjugate linear map
T .

(2) For any T ∈ EndR(V ), show that there is a uniqe C-linear map T1 ∈ EndC(V ) and a
conjugate linear map T2 ∈ EndR(V ) such that T = T1 + T2. Find such T1, T2 for the linear
map T in Problem 7.
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